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ABSTRACT 
The spectral boundary element method for solving two-dimensional transient heat conduction problems 
is developed. This method is combined with the fast Fourier transform (FFT) to convert the solution 
between the time and frequency domains. The fundamental solutions in the frequency domain, required 
for the present method, are discussed. The resulting line integrations in the frequency domain are discretized 
using constant boundary elements and used in a Fortran boundary element program. Three examples are 
used to illustrate the accuracy and effectiveness of the method in both the frequency and time domains. 
First, the frequency domain solution procedure is verified using the steady-state example of a semi-infinite 
half space with a heat flux applied to a patch of the surface. This spectral boundary element method is 
then applied to the problem of a circular hole in an infinite solid subjected to a time-varying heat flux, 
and solutions in both the frequency and time domains are presented. Finally, the method is used to solve 
the circular hole problem with a convection boundary condition. The accurary of these results leads to 
the conclusion that the spectral boundary element method in conjunction with the FFT is a viable option 
for transient problems. In addition, this spectral approach naturally produces frequence domain information 
which is itself of interest. 
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INTRODUCTION 

The boundary element method (BEM) is a numerical procedure used to solve partial differential 
equations. For boundary initial-value problems, the BEM requires knowledge of the boundary 
conditions and initial conditions of the domain of interest. This method requires only that the 
boundary be partitioned into elements in order to determine the solution, whereas the finite 
element method requires that the domain itself be discretized. As a result, two-dimensional 
problems require a numerical solution for only a one-dimensional integral equation. The BEM 
is particularly useful when the region of interest is much smaller than the entire domain, or 
when the results are desired only on the surface. However, conditions interior to the boundary 
can be determined as a sum once the boundary values have been calculated. Heat conduction 
problems involving sliding contact, layered materials, or near surface defects lend themselves to 
efficient solution by the BEM. 

The boundary element method utilizes the weighted residual technique to minimize the error 
in the solution of a partial differential equation. The weighting functions can be selected arbitrarily, 
but careful selection of the function will produce better results in the minimization1,2,3. The 
boundary element method described herein forms the basis for the development of a Fortran 
DYNamic Boundary Element Method Program (DYNBEMP). In order to perform the analysis 
for transient problems, a choice was made as to the treatment of time in the governing equation. 
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Three procedures have been utilized by others for BEM programs: the time-marching method, 
the Laplace transform method, and the Fourier transform method. A summary of these three 
methods follows, and Manolis4 and Beskos5 discuss further the differences in these procedures. 

The time-marching approach solves the problem in the time domain directly, utilizing such 
methods as finite difference or time-dependent fundamental solutions6. The main advantage of 
this procedure is that it is simple and straightforward. Disadvantages involve possible numerical 
instability for small time steps and possible lengthy time to solution. Solutions found using this 
procedure are in general more accurate early in the time period of interest than later, since 
errors in the solution accumulate as time progresses. 

Many authors have used the Laplace transform to remove time dependency in diffusion 
equations with applications other than heat conduction, such as unsteady flow in aquifers7,8 

and soil consolidation9, but Rizzo and Shippy10 were the first to use a boundary element 
formulation for transient heat conduction problems. They used the Laplace transform and the 
inverse transform to obtain time history solutions. Since that time much research has been 
conducted in this area11,12. The main advantage of the Laplace transform method is that a 
reduction in dimensionality is effectively achieved provided that the initial conditions satisfy 
Laplace's equation. In addition, the solutions for steady state problems are easily determined 
since they require no inversion to recover the time domain results. Its main drawback is that 
good knowledge of the expected solution behaviour is needed to select the transform parameter 
s. This approach is not efficient for problems of complex time history since the process is basically 
a curve-fit and can be unstable if too many values of s are chosen or inaccurate if too few are used13. 

The method of solution using the Fourier transform is similar to that using the Laplace 
transform and has also been applied to a variety of problems, including heat conduction, 
thermoelasticity, and fluid flow14. The Laplace transform parameter s corresponds to the complex 
frequency iw in the Fourier transform, where i = √ - 1 , indicating that the Fourier transform 
requires solutions be found in the complex domain. The main difference in the two methods is 
the manner in which the transforms are inverted. Specifically, here the fast Fourier transform 
(FFT) is available for efficient inversion from the frequency domain to the time domain15. 
The advantages of this Fourier method are the same as for Laplace method mentioned above, 
and only one major disadvantage of the procedure exists. For problems where the time window 
of interest is long and the time history more complex, a small time step and a large number of 
transform points are needed to recover accurate solutions, requiring large amounts of CPU time. 
However, this problem has been overcome using a frequency selection procedure discussed later 
in this paper. In addition, the present technique is ideally suited to massively parallel computation. 

DYNBEMP uses this Fourier transform method, in conjunction with the FFT, to convert 
from the time domain to the frequency domain and back. This type of derivation and 
implementation follows the static solution procedure, since the transient problem is redefined 
as a series of pseudo-static ones. In addition, the frequency domain development naturally 
provides information on the dynamic properties of the system, which are often themselves of 
interest16. The purpose of this paper is to assess the effectiveness of the FFT as a tool 
appropriate for combination with the spectral boundary element method, specifically as applied 
to transient heat conduction problems. 

SPECTRAL BEM DEVELOPMENT 

Governing integral equation 
The governing equation for heat conduction problems can be expressed, in either one, two, 

or three dimensions17, as, 
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where T is temperature, Ω represents the domain of interest, K=k/pc is thermal diffusivity, k is 
thermal conductivity, p is density, c is specific heat, is the Laplacian operator, and t is time. 

Equation (1), which is transient, is transformed into the frequency domain using the FFT. 
For two-dimensional problems, the temperature is written in spectral form as, 

where i = √- 1 and wn are discrete frequencies of an FFT spectrum. Substitution of (2) into (1) 
yields, 

Equation (3), also known as the Helmholz equation, becomes the basis for the BEM formulation 
for the heat conduction problem in the frequency domain. It is noted that is a complex-valued 
temperature in the frequency domain. From this point forward, the carat and the subscript on 
the discrete frequency terms will be dropped for neatness. Clarification will be made, if necessary, 
to distinguish the time and frequency domains. 

The three types of boundary conditions for the Helmholz problem can now be considered. 
The first type, referred to as essential, is T= on T1. The second, called the natural condition, 
is q = on T2, where q = k(dT/dn) is the component of the heat flux in the direction of the 
outward normal to T2, the boundary of Ω. The barred terms in these conditions represent known 
quantities on their respective boundaries. The third type is a combination of T and q which 
occurs in convective boundary conditions. For the results contained herein, the convective 
relation used is q= —hf(T—Tf) where hf is the coefficient of heat transfer across the interface, 
T3, between Ω and the ambient domain and Tf is the ambient temperature. The known boundary 
value in this case is Tf and the unknown variable used is the temperature, T on T3. The flux 
is determined after the solution of the BEM using the convective relation. For a well-posed 
boundary value problem, T1; T2, T3 must cover all of T without any overlap, as in Figure 1. 

The weighted residual method is used on the governing equation of heat conduction to produce 
the boundary integral equation. This procedure and resulting Fortran code rely on the work of 
Hucker and Farris18. The weighted residual method is accomplished by multiplying (2) by an 
arbitrary function T* and integrating across the domain to obtain, 
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Application of Green's first and second theorems to (4) and rearranging yields, 

The weighting function T* must satisfy the Helmholz equation (3) and the smoothness 
requirements have placed on it by the use of Green's theorems. Green's theorems require that 
T* have continuous derivatives of at least the second order, interpreted in the sense of generalized 
functions. The fundamental equation for the two-dimensional Helmholz problem is expressed as, 

where ∆ is the Dirac delta function with a source point at (ξ,n). This represents a point source 
of heat at (ξ,n) oscillating with the frequency w. The fundamental solution to (6) is, 

where r is the distance from the source point (ξ,n) to the observation point (x, y) and K0 is the 
modified Bessel's function of the second kind of order zero. Equation (7) can be rewritten with 
the use of mathematical identities19, 

where ker0 and kei0 are the Kelvin functions of order zero. Note that the derivative of the 
fundamental solution with respect to the outward normal n of the boundary T is, 

where dr is the component of r in the normal direction, s=√(w/k)r, and the prime represents d/ds. 
The first term of (5) can be rewritten from using 

the sifting property of the delta function. This allows (5) to become, 

Equation (10) can be used to calculate the temperature, T(ξ,n), at any point internal to the 
boundary once all of the boundary values have been determined. 

In order to find the solution on the boundary, the unknown T's and dT/dn's, the above 
equation must be modified by taking the source point to the boundary, requiring that the 
integrals in (10) be interpreted in the Cauchy Principal Value sense. Equation (10) then becomes, 

where the first coefficient is separated into real and imaginary parts to emphasize that T is 
complex-valued. It is now possible to calculate the boundary conditions which were previously 
unknown by reducing (11) to an algebraic system of equations. 

Up to this point, no mention has been made of the initial conditions for the boundary value 
problem. In the Laplace transform the initial conditions naturally appear as a result of the 
transform itself. This does not occur with the Fourier transform, but results for problems with 
non-zero initial conditions can still be obtained. First, let the temperature of the body be 
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represented by, 

where is a position vector, t is time, is the transient part of the solution, and T∞ is the 
initial condition. Substitution of this relation into (1) gives, 

If which is common among engineering problems, then the transient problem is 
solved using (10) and (11) by substituting for T in the derivation. The final solution, including 
any initial conditions, can then be found from (12). If T∞ does not satisfy Laplace's equation, 
then the contribution of the initial conditions to the problem must be determined using a domain 
integral. Problems of this nature are not efficiently solved using boundary elements since the 
main advantage of the method over finite elements, not discretizing the domain, is no longer valid. 

Computer implementation 
The integrals of (11) are approximated using numerical quadrature, dividing the boundary 

into N elements over which the temperature T and the heat flux q = k(dT/dn) are taken as 
constant values. Equation (11) reduces to the following for the ith element on the boundary that 
is discretized into N elements, 

Writing these integrals in matrix form as, 

HT=GQ (16) 
where H and G are each complex N x N matrices, called the influence matrices of the system, 
and T and Q are complex-valued vectors of length N. 

In general, the matrix entries in G and H are computed numerically in DYNBEMP using 
four-point Gaussian quadrature to perform the integration. For the case i=j, the integrals must 
be handled with care due to the singularity which occurs in the fundamental solution when the 
distance between the source and the observation points approaches zero. Here, the numerical 
integration is performed using a special Gaussian quadrature developed for logarithmic 
singularities19. 

Once the influence matrices have been determined, the boundary conditions for the particular 
problem are applied. Each element of the discretized boundary has a known value of temperature 
or heat flux acting upon it. As a result, unknown boundary values still remain on both the left 
and the right sides of (16). Collecting the unknowns on the left of the equation results in, 

AX=F (17) 
where the vector X contains all the unknown boundary conditions. 

The previous steps are followed for each significant frequency in the input spectrum (derived 
from an FFT of the time domain boundary conditions) and the entire solution stored. Then, an 
inverse FFT is applied to recover the time response at a given boundary location or point 



818 L. R. HILL AND T. N. FARRIS 

interior to the body. Significant frequencies are determined from the FFT amplitude spectrum 
of the known boundary conditions by comparing the amplitude of a given frequency to the 
maximum amplitude contained in the FFT amplitude spectrum. If the ratio of the given 
frequency's amplitude to the maximum amplitude was less than 0.01, then that frequency was 
deemed insignificant, and the solution for that frequency is not included in the reconstruction, 
(2). Only frequencies less than the Nyquist frequency are operated on with this process. The 
Nyquist value is defined as wNy=1(2∆t), where At is the time step used in the FFT. Values 
above the Nyquist are not used in the DYNBEMP solution. This particular selection method 
was utilized for its ease of implementation and its accuracy. Since each frequency solution is 
calculated independently of the others, this process is a prime candidate for implementation on 
parallel processing machines. 

The initial condition is taken to be zero for the BEM program, and any non-zero initial 
condition which satisfies Laplace's equation is accounted for, after the frequency solution has 
been found and inverted, using the procedure detailed in the previous section. 

NUMERICAL EXAMPLES 

Two-dimensional half space problem 
To determine the applicability of the spectral boundary method to frequency domain results, 

a fully two-dimensional example is investigated. This problem consists of a semi-infinite half 
space with a heat flux, applied over the infinite strip — a<x<a, y=0, and — ∞ < z < ∞ . 
Figure 2(a) depicts this geometry. 

The analytical frequency solution for this problem is obtained from the governing equation 
of heat conduction, as written in spectral form (2). Noting that is an even function in x and 
can be written as a cosine series and then applying the following boundary conditions, 
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yields the complete frequency domain solution for this half space problem: 

This frequency domain solution may be interpreted in the time domain as the solution to the 
following steady-state problem: where 

is the amplitude and ΦD = arctan is the phase. D 
represents either Q0or T, the input heat flux and the temperature at a point in the half space, 
respectively. 

In order to compare this analytical solution to results from DYNBEMP, the constants a, Q0/k 
and K were assigned values of 0.5 m, 10004-1000i°C/m and 1.48 x 10-5 m2/s, respectively. The 
frequency, w, used was 0.01 rad/s. The entire half space cannot be modelled with the constant 
element type utilized in DYNBEMP, so a block which is large enough to simulate a half space 
was used. The geometry of this block is shown in Figure 2(b). 

The DYNBEMP results are compared to the analytical solution along the surface (y = 0, 
0<x/a< 1) and along the centreline (x=0, — 1 <y/a<0). Figures 3 and 4 depict the comparison 
for the real and imaginary parts of the complex temperature on the surface, and Figures 5 and 
6 contain the same results for the centreline temperature. 

The maximum error encountered in this example is approximately 0.8% for either the real 
or imaginary parts of the complex temperature, excluding the few points near the centreline on 
the surface (Figures 3 and 4). The DYNBEMP results have a larger error on the surface near 
the centreline due to accuracy problems near sharp corners of a BEM model. This problem is 
discussed in detail in Reference [18]. The error encountered on the surface results in an error 
of phase and not in amplitude, as the real part of the temperature is overestimated and the 
imaginary part underestimated by approximately equal amounts. 

Circular hole subjected to heat flux 
Time domain reconstruction is examined using the example of an infinite body, with a hole 

of radius a in the centre, which has a known heat flux per unit length in the z-direction, 
applied to it. The problem geometry is depicted in Figure 7. 



820 L. R. HILL AND T. N. FARRIS 



FAST FOURIER TRANSFORM OF SPECTRAL BOUNDARY ELEMENTS 821 

The analytical solution for this problem can be obtained from the governing equation of heat 
conduction in spectral form as written in cylindrical coordinates, noting that the problem is 
symmetric with respect to 0: 

where represents a complex-valued spectral temperature. Application of the following 
boundary conditions to the general solution of (19)17, 

yields the complete frequency domain solution: 

In order to compare this analytical solution to the results of DYNBEMP, the following 
numerical values were selected for the necessary constants: K = 1.48 x 10-5 m2/s; co„=0.01 rad/s; 
a=0.5 m; and = 1000 +1000i °C/m. 

This problem was modelled with 20 constant boundary elements in DYNBEMP to approximate 
the hole boundary. These elements are suitable for two-dimensional problems and advantage is 
not taken of the axial symmetry. This is the only boundary which need be discretized. The 
elements are numbered clockwise, indicating that the normal to the boundary is directed inward, 
and the body itself lies outside the hole and extends to infinity. The temperatures obtained from 
the boundary element method are compared to the analytical values not only on the hole 
boundary, but also interior to the body (using (10)). In particular, the complex-valued frequency 
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domain temperatures are determined along a radial line, for 1.0<r/a<5.1 (see Figure 7 for 
these locations). Figures 8 and 9 depict these results for the real and imaginary parts of the 
complex temperature, respectively. These spectral boundary element results compare very well 
with the analytical solution, both for the temperature on the boundary (at r/a= 1.0) and points 
interior to the body (for r/a> 1.0). The maximum percent error encountered in this example was 
approximately 0.5% for either the real or imaginary part of the solution. 

To solve this problem in the time domain requires a known flux history, which is applied to 
the hole boundary, from which the frequency spectrum can be obtained. The flux input selected 
is triangular in shape, with a width of 65 seconds and a peak magnitude = 1000 °C/m. Figure 
10 shows this input flux history. The pulse has an initial time delay of ten seconds so that 
potential wrap-around problems in the FFT reconstructions are more readily apparent. For the 
FFT a time step of 0.5 seconds was used in combination with 1024 points to yield a total time 
window of 512 seconds, approximately seven times the duration of the input pulse. This should 
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allow for the temperature at any point to return to zero before the end of the FFT window, 
eliminating any wrap-around problems. Figure 11 represents the input pulse in the frequency 
domain after transformation with the above parameters. The FFT procedure used here is described 
in detail in Reference 15. 

For the analytical transient solution, the frequency domain equation for the complex 
temperature (20) is solved for each and every frequency of the input spectrum (Figure 11) at a 
given location along a radial line. Then, the inverse FFT is implemented to transform this 
analytical frequency solution into the time domain. 

To obtain DYNBEMP results, the frequency selection procedure was utilized, reducing the 
number of non-zero frequencies from 1023 to 34 (Figure 11). The entire solution for the boundary 
and the selected interior points is stored for each significant frequency so that time reconstructions 
of any element can be performed. 

Temperature histories for three different locations are compared: one on the hole boundary 
at r/a = 1.0, one located at r/a = 1.1 and the last one at r/a = 3.l. Figure 7 depicts the locations 



824 L. R. HILL AND T. N. FARRIS 

graphically. The comparison of BEM results and the analytical solutions can be found in Figure 
12. The DYNBEMP results agree very well with the known analytical solution. The maximum 
error encountered at the peak temperature is no greater than 0.8% for any of the three locations 
investigated. These comparisons also validate the frequency selection procedure, since the 
analytical solutions use all of the spectrum frequencies while the DYNBEMP results are 
reconstructed using only the significant ones. 

Convection problem-circular cooling passage 
This third example is presented to show the accuracy of the results for convective boundary 

conditions and non-zero initial conditions. The geometry of this problem is the same as for the 
circular hole in the finite half space discussed in Section 3.2 and pictured in Figure 7. The 
boundary and initial conditions for this problem can be expressed as 

where T0 is a constant for this case. Letting T(r, f)= (r,t)+T0, writing T and in spectral 
form, and solving the frequency domain governing (19) for results in the analytical frequency 
domain solution, 
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The complete solution in the time domain can be written as, 

The numerical values of a and K are the same as in the previous hole example, and T0 and hf 
are assigned the values of 50°C and 1000 W/(m2—°C), respectively. 

To simulate a pulse of cooling fluid through the hole, the time history selected for the known 
boundary condition Tf was initially at the body temperature To = 50oC (indicating an empty 
hole in thermal equilibrium with the body). Then the fluid begins flowing, dropping the 
temperature down 25°C and is maintained at this temperature for 60 seconds. The fluid flow is 
then stopped, and the temperature returned to the initial value (50°C). The initial time delay 
was again ten seconds to check for wrap-around in the FFT. DYNBEMP is used to solve for 

withT0 added after the inverse FFT has been performed. Figure 13 represents the fluid (passage) 
temperature, with the initial condition value T0 retained. A time step of 0.1 seconds was used 
with 8192 points to yield a total time window of 819 seconds, more than ten times the input 
duration. Figure 14 represents the frequency spectrum of the cooling liquid pulse after transform. 
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The analytical solution is found using all of the frequencies and complex temperature values 
from the transform, while the frequency selection procedure discussed in the last example is 
performed on the input spectrum to reduce the number of non-zero frequencies from 8191 to 
173. DYNBEMP only provides a solution for those 173 values. All other values have a zero 
solution. 

Temperature histories for three different locations are compared: one on the hole boundary 
at r/a= 1.0, one located at r/a = 1.1 and one at r/a = 3.1. Figure 7 depicts these locations, which 
are the same as in the previous example. The comparison of the BEM results and the analytical 
solution in the time domain (after the initial conditions have been added) can be found in Figure 
15. The DYNBEMP reconstructions are in error of no more than 0.7% for any of the three 
locations of interest. Again, the frequency selection procedure holds for the different input pulse 
and transform. 

CONCLUSIONS 
The spectral boundary element method, in conjunction with spectral analysis and the fast Fourier 
transform, is shown to be a useful tool for solving transient heat conduction problems. Both the 
half space and axisymmetric example problems validate the application of the spectral boundary 
element method to heat conduction problems. When compared to analytical solutions, the BEM 
produced very good agreement of results for all problems investigated, in both the frequency 
and time domains, and for both interior and boundary points. The fast Fourier transform 
procedure can be made very efficient by excluding frequencies whose FFT spectrum amplitides 
are small and do not substantially contribute to the overall problem solutions. Finally, it is 
noted that the FFT approach is uniquely suitable for massively parallel computation, as each 
processor could be used for a different frequency of the transform spectrum. 
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